Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.476
Filtrar
1.
Ultrastruct Pathol ; 48(3): 234-245, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38619195

RESUMO

Platelet-viral interactions are evolving as a new concern. Coagulation disorder is a major consequence of the COVID-19 infection. In chronic hepatitis virus infections, defect in coagulation factors, thrombocytopenia and platelet function abnormalities are common. A SARS-CoV-2 infection on top of chronic viral hepatitis infection can be common in areas where viral hepatitis is endemic. Here, we investigate the platelet ultrastructural changes and estimate the serum platelet factor-4 (PF-4), ferritin, CRP, and D-dimer in COVID-19 patients (n = 60), COVID-19 patients with associated chronic viral hepatitis (n = 20), and healthy subjects (n = 20). Ultrastructural changes were demonstrated in all test groups, denoting platelet activation. In chronic viral hepatitis patients, Platelet ultrastrustural apoptotic changes were also seen. Significantly high levels of PF-4 were confirmed in moderate and severe COVID-19 patients (P.value <0.001), with a cut off value of 17 ng/ml for predicting disease severity. A positive correlation of PF-4 with the level of serum ferritin, CRP, and D-dimer (p value < 0.001) was noted, while negatively correlated with platelet count and platelet granule count (p value < 0.001). In our study, chronic viral hepatitis patients presented mild COVID-19 signs, and their PF-4 level was comparable with the subgroup of mild COVID-19 infection. The platelet's critical role in COVID-19 coagulopathy and chronic viral hepatitis is evidenced by the ultrastructural changes and the high levels of PF4. Moreover, a dual viral infection poses a substantial burden on the platelets, necessitating close monitoring of the patient's coagulation profile.


Assuntos
Plaquetas , COVID-19 , Humanos , COVID-19/complicações , COVID-19/sangue , COVID-19/patologia , Plaquetas/ultraestrutura , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , SARS-CoV-2 , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Contagem de Plaquetas , Hepatite C Crônica/complicações , Hepatite C Crônica/sangue , Hepatite C Crônica/patologia , Idoso , Fator Plaquetário 4/sangue , Ativação Plaquetária
2.
PLoS One ; 19(4): e0297849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625951

RESUMO

More and more evidence shows that abnormal lipid metabolism leads to immune system dysfunction in AMD and promotes the occurrence of AMD by changing the homeostasis of ocular inflammation. However, the molecular mechanism underlying the effect of lipid metabolism on the phenotype and function of macrophages is still unclear, and the mechanism of association between AMD and cancer and COVID-19 has not been reported. The purpose of this study is to explore the interaction between lipid metabolism related genes, ferroptosis related genes and immunity in AMD, find out the key genes that affect the ferroptosis of AMD through lipid metabolism pathway and the molecular mechanism that mediates the action of macrophages, and find out the possible mechanism of lipid metabolism and potential co-therapeutic targets between AMD and cancer and COVID-19, so as to improve treatment decision-making and clinical results. For the first time, we have comprehensively analyzed the fatty acid molecule related genes, ferroptosis related genes and immune microenvironment of AMD patients, and determined that mast cells and M1 macrophages are the main causes of AMD inflammation, and found that SCD is the core gene in AMD that inhibits ferroptosis through lipid metabolism pathway, and verified the difference in the expression of SCD in AMD in a separate external data set. Based on the analysis of the mechanism of action of the SCD gene, we found for the first time that Has-miR-199a-3p/RELA/SCD is the core axis of action of lipid metabolism pathway to inhibit the ferroptosis of AMD. By inhibiting the immune checkpoint, we can enhance the immune cell activity of AMD and lead to the transformation of macrophages from M2 to M1, thereby promoting the inflammation and pathological angiogenesis of AMD. At the same time, we found that ACOX2 and PECR, as genes for fatty acid metabolism, may regulate the expression of SCD during the occurrence and development of COVID-19, thus affecting the occurrence and development of AMD. We found that FASD1 may be a key gene for the joint action of AMD and COVID-19, and SCD regulates the immune infiltration of macrophages in glioma and germ line tumors. In conclusion, our results can provide theoretical basis for the pathogenesis of AMD, help guide the treatment of AMD patients and their potentially related diseases and help to design effective drug targets.


Assuntos
COVID-19 , MicroRNAs , Neoplasias , Humanos , MicroRNAs/metabolismo , Metabolismo dos Lipídeos/genética , 60489 , Macrófagos/metabolismo , Inflamação/patologia , Ácidos Graxos/metabolismo , Neoplasias/patologia , COVID-19/patologia , Microambiente Tumoral , Fator de Transcrição RelA/metabolismo
3.
Signal Transduct Target Ther ; 9(1): 104, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654010

RESUMO

The angiotensin-converting enzyme 2 (ACE2) is a primary cell surface viral binding receptor for SARS-CoV-2, so finding new regulatory molecules to modulate ACE2 expression levels is a promising strategy against COVID-19. In the current study, we utilized islet organoids derived from human embryonic stem cells (hESCs), animal models and COVID-19 patients to discover that fibroblast growth factor 7 (FGF7) enhances ACE2 expression within the islets, facilitating SARS-CoV-2 infection and resulting in impaired insulin secretion. Using hESC-derived islet organoids, we demonstrated that FGF7 interacts with FGF receptor 2 (FGFR2) and FGFR1 to upregulate ACE2 expression predominantly in ß cells. This upregulation increases both insulin secretion and susceptibility of ß cells to SARS-CoV-2 infection. Inhibiting FGFR counteracts the FGF7-induced ACE2 upregulation, subsequently reducing viral infection and replication in the islets. Furthermore, retrospective clinical data revealed that diabetic patients with severe COVID-19 symptoms exhibited elevated serum FGF7 levels compared to those with mild symptoms. Finally, animal experiments indicated that SARS-CoV-2 infection increased pancreatic FGF7 levels, resulting in a reduction of insulin concentrations in situ. Taken together, our research offers a potential regulatory strategy for ACE2 by controlling FGF7, thereby protecting islets from SARS-CoV-2 infection and preventing the progression of diabetes in the context of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Fator 7 de Crescimento de Fibroblastos , Ilhotas Pancreáticas , Organoides , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , COVID-19/patologia , SARS-CoV-2/genética , Organoides/virologia , Organoides/metabolismo , Organoides/patologia , Animais , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/virologia , Ilhotas Pancreáticas/patologia , Fator 7 de Crescimento de Fibroblastos/genética , Fator 7 de Crescimento de Fibroblastos/metabolismo , Camundongos , Masculino , Células-Tronco Embrionárias Humanas/metabolismo , Secreção de Insulina/genética
4.
Cells ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474396

RESUMO

The pathologic consequences of Coronavirus Disease-2019 (COVID-19) include elevated inflammation and dysregulated vascular functions associated with thrombosis. In general, disruption of vascular homeostasis and ensuing prothrombotic events are driven by activated platelets, monocytes, and macrophages, which form aggregates (thrombi) attached to the endothelium lining of vessel walls. However, molecular pathways underpinning the pathological interactions between myeloid cells and endothelium during COVID-19 remain undefined. Here, we tested the hypothesis that modulations in the expression of cellular receptors angiotensin-converting enzyme 2 (ACE2), CD147, and glucose-regulated protein 78 (GRP78), which are involved in homeostasis and endothelial performance, are the hallmark responses induced by SARS-CoV-2 infection. Cultured macrophages and lungs of hamster model systems were used to test this hypothesis. The results indicate that while macrophages and endothelial cells are less likely to support SARS-CoV-2 proliferation, these cells may readily respond to inflammatory stimuli generated by the infected lung epithelium. SARS-CoV-2 induced modulations of tested cellular receptors correlated with corresponding changes in the mRNA expression of coagulation cascade regulators and endothelial integrity components in infected hamster lungs. Among these markers, tissue factor (TF) had the best correlation for prothrombotic events during SARS-CoV-2 infection. Furthermore, the single-molecule fluorescence in situ hybridization (smFISH) method alone was sufficient to determine the peak and resolution phases of SARS-CoV-2 infection and enabled screening for cellular markers co-expressed with the virus. These findings suggest possible molecular pathways for exploration of novel drugs capable of blocking the prothrombotic shift events that exacerbate COVID-19 pathophysiology and control the disease.


Assuntos
COVID-19 , Trombose , Humanos , COVID-19/patologia , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2 , Chaperona BiP do Retículo Endoplasmático , Células Endoteliais/metabolismo , Hibridização in Situ Fluorescente , Peptidil Dipeptidase A/metabolismo , Pulmão/metabolismo , Trombose/patologia , Endotélio/metabolismo , Homeostase
5.
Neurol Sci ; 45(5): 1835-1843, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430399

RESUMO

We reported four patients with coronavirus disease 2019 (COVID-19)-associated myelopathies, highlighting the delayed and atypical spinal cord magnetic resonance imaging (MRI) features and the literature review. All four patients were males, aged 37 to 72 years old. The latencies from COVID-19 to the onset of myelitis were 5, 15, 30, and 80 days. The initial symptoms were numbness and weakness of lower limbs in three cases, and back pain with weakness of lower limbs in one case. The peak symptoms included paraplegia, sphincter dysfunction, sensory disturbance level, and spastic gait. The EDSS scores were 7.5, 9.0, 9.0, and 7.5, respectively. Magnetic resonance imaging (MRI) showed delayed atypical spinal cord lesions at onset, i.e., two cases without lesions, one with linear spinal meningeal enhancement, and one with punctate lesions on T2-weighted imaging (T2WI). During the follow-up period, punctate, linear, and cloudy lesions in the lateral and posterior funiculus were seen on T2WI in the peak stage. The prominent features of spinal cord lesions were linear spinal meningeal enhancement, the mismatch of deteriorated clinical symptoms, and inapparent MRI findings. All four patients were left with an obvious disability, with two patients completely bedridden and two who could stand with support. This report highlights the recognition of COVID-19-associated myelopathy even months after initial infection, especially in patients with delayed and atypical spinal cord findings on MRI.


Assuntos
COVID-19 , Mielite , Doenças da Medula Espinal , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Feminino , COVID-19/complicações , COVID-19/patologia , Doenças da Medula Espinal/complicações , Doenças da Medula Espinal/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Imageamento por Ressonância Magnética/métodos , Mielite/diagnóstico por imagem , Mielite/etiologia , Mielite/patologia
6.
Pathologie (Heidelb) ; 45(3): 203-210, 2024 May.
Artigo em Alemão | MEDLINE | ID: mdl-38427066

RESUMO

BACKGROUND: Autopsies have long been considered the gold standard for quality assurance in medicine, yet their significance in basic research has been relatively overlooked. The COVID-19 pandemic underscored the potential of autopsies in understanding pathophysiology, therapy, and disease management. In response, the German Registry for COVID-19 Autopsies (DeRegCOVID) was established in April 2020, followed by the DEFEAT PANDEMIcs consortium (2020-2021), which evolved into the National Autopsy Network (NATON). DEREGCOVID: DeRegCOVID collected and analyzed autopsy data from COVID-19 deceased in Germany over three years, serving as the largest national multicenter autopsy study. Results identified crucial factors in severe/fatal cases, such as pulmonary vascular thromboemboli and the intricate virus-immune interplay. DeRegCOVID served as a central hub for data analysis, research inquiries, and public communication, playing a vital role in informing policy changes and responding to health authorities. NATON: Initiated by the Network University Medicine (NUM), NATON emerged as a sustainable infrastructure for autopsy-based research. NATON aims to provide a data and method platform, fostering collaboration across pathology, neuropathology, and legal medicine. Its structure supports a swift feedback loop between research, patient care, and pandemic management. CONCLUSION: DeRegCOVID has significantly contributed to understanding COVID-19 pathophysiology, leading to the establishment of NATON. The National Autopsy Registry (NAREG), as its successor, embodies a modular and adaptable approach, aiming to enhance autopsy-based research collaboration nationally and, potentially, internationally.


Assuntos
Autopsia , COVID-19 , Sistema de Registros , Humanos , COVID-19/epidemiologia , COVID-19/patologia , Alemanha/epidemiologia , Pandemias , SARS-CoV-2
7.
Aging (Albany NY) ; 16(6): 5412-5434, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38484369

RESUMO

BACKGROUND: Coronavirus disease-2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a newly emerging coronavirus. BSG (basigin) is involved in the tumorigenesis of multiple tumors and recently emerged as a novel viral entry receptor for SARS-CoV-2. However, its expression profile in normal individuals and cancer patients are still unclear. METHODS: We performed a comprehensive analysis of the expression and distribution of BSG in normal tissues, tumor tissues, and cell lines via bioinformatics analysis and experimental verification. In addition, we investigated the expression of BSG and its isoforms in multiple malignancies and adjacent normal tissues, and explored the prognostic values across pan-cancers. Finally, we conducted function analysis for co-expressed genes with BSG. RESULTS: We found BSG was highly conserved in different species, and was ubiquitously expressed in almost all normal tissues and significantly increased in some types of cancer tissues. Moreover, BSG at mRNA expression level was higher than ACE2 in normal lung tissues, and lung cancer tissues. High expression of BSG indicated shorter overall survival (OS) in multiple tumors. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that BSG is mostly enriched in genes for mitochondria electron transport, oxidoreduction-driven active transmembrane transporter activity, mitochondrial inner membrane, oxidative phosphorylation, and genes involving COVID-19. CONCLUSIONS: Our present work emphasized the value of targeting BSG in the treatment of COVID-19 and cancer, and also provided several novel insights for understanding the SARS-CoV-2 pandemic.


Assuntos
COVID-19 , Neoplasias Pulmonares , Humanos , COVID-19/genética , COVID-19/patologia , Expressão Gênica , Pulmão/patologia , Neoplasias Pulmonares/patologia , SARS-CoV-2
10.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474155

RESUMO

Since the emergence of coronavirus disease-19 (COVID-19) in 2019, it has been crucial to investigate the causes of severe cases, particularly the higher rates of hospitalization and mortality in individuals with obesity. Previous findings suggest that adipocytes may play a role in adverse COVID-19 outcomes in people with obesity. The impact of COVID-19 vaccination and infection on adipose tissue (AT) is currently unclear. We therefore analyzed 27 paired biopsies of visceral and subcutaneous AT from donors of the Leipzig Obesity BioBank that have been categorized into three groups (1: no infection/no vaccination; 2: no infection but vaccinated; 3: infected and vaccinated) based on COVID-19 antibodies to spike (indicating vaccination) and/or nucleocapsid proteins. We provide additional insights into the impact of COVID-19 on AT biology through a comprehensive histological transcriptome and serum proteome analysis. This study demonstrates that COVID-19 infection is associated with smaller average adipocyte size. The impact of infection on gene expression was significantly more pronounced in subcutaneous than in visceral AT and mainly due to immune system-related processes. Serum proteome analysis revealed the effects of the infection on circulating adiponectin, interleukin 6 (IL-6), and carbonic anhydrase 5A (CA5A), which are all related to obesity and blood glucose abnormalities.


Assuntos
COVID-19 , Humanos , COVID-19/patologia , Vacinas contra COVID-19 , Proteoma , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Vacinação , Anticorpos Antivirais
11.
Nat Commun ; 15(1): 2100, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453949

RESUMO

Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.


Assuntos
COVID-19 , Inflamassomos , Humanos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , COVID-19/patologia , Inflamassomos/metabolismo , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleoproteínas/metabolismo , SARS-CoV-2/metabolismo
12.
Viruses ; 16(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38400021

RESUMO

Seasonal infection rates of individual viruses are influenced by synergistic or inhibitory interactions between coincident viruses. Endemic patterns of SARS-CoV-2 and influenza infection overlap seasonally in the Northern hemisphere and may be similarly influenced. We explored the immunopathologic basis of SARS-CoV-2 and influenza A (H1N1pdm09) interactions in Syrian hamsters. H1N1 given 48 h prior to SARS-CoV-2 profoundly mitigated weight loss and lung pathology compared to SARS-CoV-2 infection alone. This was accompanied by the normalization of granulocyte dynamics and accelerated antigen-presenting populations in bronchoalveolar lavage and blood. Using nasal transcriptomics, we identified a rapid upregulation of innate and antiviral pathways induced by H1N1 by the time of SARS-CoV-2 inoculation in 48 h dual-infected animals. The animals that were infected with both viruses also showed a notable and temporary downregulation of mitochondrial and viral replication pathways. Quantitative RT-PCR confirmed a decrease in the SARS-CoV-2 viral load and lower cytokine levels in the lungs of animals infected with both viruses throughout the course of the disease. Our data confirm that H1N1 infection induces rapid and transient gene expression that is associated with the mitigation of SARS-CoV-2 pulmonary disease. These protective responses are likely to begin in the upper respiratory tract shortly after infection. On a population level, interaction between these two viruses may influence their relative seasonal infection rates.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Cricetinae , Animais , Humanos , COVID-19/patologia , Mesocricetus , SARS-CoV-2 , Influenza Humana/patologia , Pulmão , Modelos Animais de Doenças
13.
Neurol Sci ; 45(5): 1815-1833, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38421524

RESUMO

Post-COVID conditions (PCCs) cover a wide spectrum of lingering symptoms experienced by survivors of coronavirus disease 2019 (COVID-19). Neurological and neuropsychiatric sequelae are common in PCCs. Advanced magnetic resonance imaging (MRI) techniques can reveal subtle alterations in brain structure, function, and perfusion that underlie these sequelae. This systematic review aimed to synthesize findings from studies that used advanced MRI to characterize brain changes in individuals with PCCs. A detailed literature search was conducted in the PubMed and Scopus databases to identify relevant studies that used advanced MRI modalities, such as structural MRI (sMRI), diffusion tensor imaging (DTI), functional MRI (fMRI), and perfusion-weighted imaging (PWI), to evaluate brain changes in PCCs. Twenty-five studies met the inclusion criteria, comprising 1219 participants with PCCs. The most consistent findings from sMRI were reduced gray matter volume (GMV) and cortical thickness (CTh) in cortical and subcortical regions. DTI frequently reveals increased mean diffusivity (MD), radial diffusivity (RD), and decreased fractional anisotropy (FA) in white matter tracts (WMTs) such as the corpus callosum, corona radiata, and superior longitudinal fasciculus. fMRI demonstrated altered functional connectivity (FC) within the default mode, salience, frontoparietal, somatomotor, subcortical, and cerebellar networks. PWI showed decreased cerebral blood flow (CBF) in the frontotemporal area, thalamus, and basal ganglia. Advanced MRI shows changes in the brain networks and regions of the PCCs, which may cause neurological and neuropsychiatric problems. Multimodal neuroimaging may help understand brain-behavior relationships. Longitudinal studies are necessary to better understand the progression of these brain anomalies.


Assuntos
COVID-19 , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , COVID-19/patologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Encéfalo , Espectroscopia de Ressonância Magnética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
14.
Front Immunol ; 15: 1273942, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410511

RESUMO

Introduction: It is now clear that coronavirus disease 19 (COVID-19) severity is associated with a dysregulated immune response, but the relative contributions of different immune cells is still not fully understood. SARS CoV-2 infection triggers marked changes in NK cell populations, but there are contradictory reports as to whether these effector lymphocytes play a protective or pathogenic role in immunity to SARS-CoV-2. Methods: To address this question we have analysed differences in the phenotype and function of NK cells in SARS-CoV-2 infected individuals who developed either very mild, or life-threatening COVID-19 disease. Results: Although NK cells from patients with severe disease appeared more activated and the frequency of adaptive NK cells was increased, they were less potent mediators of ADCC than NK cells from patients with mild disease. Further analysis of peripheral blood NK cells in these patients revealed that a population of NK cells that had lost expression of the activating receptor NKG2D were a feature of patients with severe disease and this correlated with elevated levels of cell free NKG2D ligands, especially ULBP2 and ULBP3 in the plasma of critically ill patients. In vitro, culture in NKG2DL containing patient sera reduced the ADCC function of healthy donor NK cells and this could be blocked by NKG2DL-specific antibodies. Discussion: These observations of reduced NK function in severe disease are consistent with the hypothesis that defects in immune surveillance by NK cells permit higher levels of viral replication, rather than that aberrant NK cell function contributes to immune system dysregulation and immunopathogenicity.


Assuntos
COVID-19 , Citotoxicidade Imunológica , Humanos , COVID-19/patologia , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , SARS-CoV-2/metabolismo
15.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339114

RESUMO

Research indicates compelling evidence of SARS-CoV-2 vertical transmission as a result of placental pathology. This study offers an approach to histopathological and immunohistochemical placental observations from SARS-CoV-2-positive mothers compared to negative ones. Out of the 44 examined placentas, 24 were collected from patients with a SARS-CoV-2 infection during pregnancy and 20 were collected from patients without infection. The disease group showed strong SARS-CoV-2 positivity of the membranes, trophoblasts, and fetal villous macrophages. Most infections occurred during the third trimester of pregnancy (66.6%). Pathology revealed areas consistent with avascular villi (AV) and thrombi in the chorionic vessels and umbilical cord in the positive group, suggesting fetal vascular malperfusion (FVM). This study shows SARS-CoV-2 has an impact on coagulation, demonstrated by fetal thrombotic vasculopathy (p = 0.01) and fibrin deposition (p = 0.01). Other observed features included infarction (17%), perivillous fibrin deposition (29%), intervillous fibrin (25%), delayed placental maturation (8.3%), chorangiosis (13%), chorioamnionitis (8.3%), and meconium (21%). The negative control group revealed only one case of placental infarction (5%), intervillous fibrin (5%), delayed placental maturation (5%), and chorioamnionitis (5%) and two cases of meconium (19%). Our study sheds light on the changes and differences that occurred in placentas from SARS-CoV-2-infected mothers and the control group. Further research is necessary to definitively establish whether SARS-CoV-2 is the primary culprit behind these intricate complications.


Assuntos
COVID-19 , Corioamnionite , Complicações Infecciosas na Gravidez , Gravidez , Feminino , Humanos , Placenta/patologia , COVID-19/patologia , SARS-CoV-2 , Corioamnionite/patologia , Complicações Infecciosas na Gravidez/patologia , Placentação , Infarto , Fibrina , Transmissão Vertical de Doenças Infecciosas
16.
Pathol Res Pract ; 254: 155139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301365

RESUMO

BACKGROUND: Placental damage due to viral infections increases risk of adverse perinatal outcomes. Histopathologic examination of placenta can provide information regarding association between infection and outcome. There is paucity of data describing placental pathology with respect to intrauterine fetal death (IUFD) in pregnant mothers affected with COVID-19. METHODS: 4 fetuses and 10 placentas, including one twin placenta from 9 women with history of IUFD and SARS-CoV-2 infection underwent evaluation. These findings were contrasted with 3 fetuses and 21 gestational age matched placentas from non-infected women with history of IUFD. RESULTS: Extensive gross placental lesions, mixture of histologic features (maternal/ fetal vascular malperfusion) and isolated cases of massive perivillous fibrin depositon and chronic intervillositis were observed in COVID-IUFD group. There were no distinguishing histologic findings when compared to control. Three fetuses showed signs of intraventricular/intraparenchymal hemorrhage in autopsy. CONCLUSION: These findings demonstrate that IUFD does not correspond with maternal symptoms and lacks distinctive lesion. However, there was significant placental damage which developed rapidly. These results show that SARS-CoV-2 infection results in rapid placental deterioration and fetal death. This information can be used to educate infected mothers and remind medical professionals, value of monitoring placental function especially following diagnosis of infection.


Assuntos
COVID-19 , Placenta , Feminino , Gravidez , Humanos , Placenta/patologia , COVID-19/complicações , COVID-19/patologia , SARS-CoV-2 , Morte Fetal/etiologia , Feto
17.
Z Geburtshilfe Neonatol ; 228(1): 42-48, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330958

RESUMO

COVID-19 pregnancies are associated with increased rates of premature delivery and stillbirths. It is still a matter of debate whether there is a COVID-19-associated pattern of placenta pathology. We updated our previously published results on a systematic literature review and meta-analysis of COVID-19 pregnancies. In total, 38 reports on 3677 placentas were evaluated regarding histopathological changes. Maternal vascular malperfusion (32%), fetal vascular malperfusion (19%), acute and chronic inflammation (20% and 22%) were frequent pathologies. In non-COVID-19 pregnancies, placentas show similar histologic patterns and mainly similar frequencies of manifestation. It has to be taken into account that there might be an observation bias, because some findings are diagnosed as a "pathology" that might have been classified as minor or unspecific findings in non-COVID-19 placentas. COVID-19 placentitis occurs in 1-2% of cases at the most. In conclusion, this updated meta-analysis indicates that COVID-19 infection during pregnancy does not result in an increased rate of a specific placenta pathology and COVID-19 placentitis is rare.


Assuntos
COVID-19 , Corioamnionite , Doenças Placentárias , Nascimento Prematuro , Gravidez , Feminino , Humanos , Placenta/patologia , COVID-19/patologia , Doenças Placentárias/diagnóstico , Doenças Placentárias/patologia , Natimorto
18.
Virchows Arch ; 484(3): 429-439, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38413389

RESUMO

Since the onset of the COVID-19 pandemic, autopsies have played a valuable role in understanding the pathophysiology of COVID-19. In this study, we have analyzed COVID-19-related pathology reports from autopsies, histology, and cytology on a nationwide level. Pathology reports from all 43 pathology laboratories in the Netherlands stating "COVID," "Corona," and/or "SARS" were queried from the Dutch Nationwide Pathology Database (Palga). Consecutive reports of the included patients were also retrieved. Out of 5065 entries, a total of 1833 eligible COVID-19-related pathology reports between January 2020 and June 2021 were included in this collection of reports. Lung histopathology reports reflected differences in the severity of abnormalities (acute diffuse alveolar damage, alveolar histiocytes, and thrombi during the first three pandemic waves (Wuhan variant) versus the fourth wave (alpha variant)). Autopsy reports from 2020 state significantly shorter disease duration and younger age of death compared to autopsy reports from 2021. All reports together reflected a more granular pathology with comorbidities such as chronic histiocytic intervillositis, perniosis, and thrombi found in a variety of organs (lungs, kidneys, and small and large intestines). This nationwide overview of pathology reports provides data related to deaths as well as comorbidities in a clinical setting of COVID-19. Certain findings reported in SARS-CoV-infected lungs and placentas were also reported in post-COVID-19 tissue of the same kind. Consecutive reports after the earliest reports with COVID-19 allowed for follow-up reports. These follow-up reports can help with post-viral studies regarding long-term effects of COVID-19 as well as identifying the effects of different SARS-CoV-2 variants.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Trombose , Gravidez , Feminino , Humanos , COVID-19/patologia , SARS-CoV-2 , Pandemias , Países Baixos/epidemiologia , Pulmão/patologia , Trombose/patologia , Autopsia , Complicações Infecciosas na Gravidez/patologia
19.
Eur J Immunol ; 54(3): e2250356, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361030

RESUMO

The COVID-19 pandemic illustrated an urgent need for sophisticated, human tissue models to rapidly test and develop effective treatment options against this newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Thus, in particular, the last 3 years faced an extensive boost in respiratory and pulmonary model development. Nowadays, 3D models, organoids and lung-on-chip, respiratory models in perfusion, or precision-cut lung slices are used to study complex research questions in human primary cells. These models provide physiologically relevant systems for studying SARS-CoV-2 and, of course, other respiratory pathogens, but they are, too, suited for studying lung pathologies, such as CF, chronic obstructive pulmonary disease, or asthma, in more detail in terms of viral infection. With these models, the cornerstone has been laid for further advancing the organs by, for example, inclusion of several immune cell types or humoral immune components, combination with other organs in microfluidic organ-on-chip devices, standardization and harmonization of the devices for reliable and reproducible drug and vaccine testing in high throughput.


Assuntos
COVID-19 , Pandemias , Humanos , Pulmão/patologia , COVID-19/patologia , SARS-CoV-2 , Organoides
20.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338708

RESUMO

Establishing a drug-screening platform is critical for the discovery of potential antiviral agents against SARS-CoV-2. In this study, we developed a platform based on human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) to investigate SARS-CoV-2 infectivity, with the aim of evaluating potential antiviral agents for anti-SARS-CoV-2 activity and cardiotoxicity. Cultured myocytes of iPSC-CMs and immortalized human cardiomyocyte cell line (AC-16) were primarily characterized for the expression of cardiac markers and host receptors of SARS-CoV-2. An infectivity model for the wild-type SARS-CoV-2 strain was then established. Infection modeling involved inoculating cells with SARS-CoV-2 at varying multiplicities of infection (MOIs) and then quantifying infection using immunofluorescence and plaque assays. Only iPSC-CMs, not AC16 cells, expressed angiotensin-converting enzyme 2 (ACE-2), and quantitative assays confirmed the dose-dependent infection of iPSC-CMs by SARS-CoV-2, unlike the uninfectable AC16 cells lacking the expression of ACE2. Cytotoxicity was evaluated using MTT assays across a concentration range. An assessment of the plant-derived compound panduratin A (panA) showed cytotoxicity at higher doses (50% cytotoxic concentration (CC50) 10.09 µM) but promising antiviral activity against SARS-CoV-2 (50% inhibition concentration (IC50) 0.8-1.6 µM), suppressing infection at concentrations 10 times lower than its CC50. Plaque assays also showed decreased viral production following panA treatment. Overall, by modeling cardiac-specific infectivity, this iPSC-cardiomyocyte platform enables the reliable quantitative screening of compound cytotoxicity alongside antiviral efficacy. By combining disease pathogenesis and pharmacology, this system can facilitate the evaluation of potential novel therapeutics, such as panA, for drug discovery applications.


Assuntos
COVID-19 , Chalconas , Cardiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , COVID-19/patologia , SARS-CoV-2 , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cardiopatias/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...